Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech Eng ; 143(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33269790

RESUMO

People with unilateral transtibial amputations (TTA) have greater risks of bilateral hip osteoarthritis, related to asymmetric biomechanics compared to people without TTA. Running is beneficial for physical health and is gaining popularity. However, people with TTA may not have access to running-specific prostheses (RSPs), which are designed for running, and may instead run using their daily-use prosthesis (DUP). Differences in joint loading may result from prosthesis choice; thus, it is important to characterize changes in peak and impulsive hip joint contact loading during running. Six people with and without TTA ran at 3.5 m/s while ground reaction forces, kinematics, and electromyography were collected. People with TTA ran using their own RSP and DUP. Musculoskeletal models incorporating prosthesis type of each individual were used to quantify individual muscle forces and hip joint contact forces (HJCFs) during running. People using RSPs had smaller bilateral peak hip joint contact forces compared to when wearing DUPs during stance and swing, and a smaller impulse over the entire gait cycle. Greater amputated leg peak hip joint contact forces for people wearing DUPs compared to RSPs occurred with greater forces from the ipsilateral gluteus maximus during stance. People with TTA also had greater bilateral peak hip joint contact forces during swing compared to people without TTA, which occurred with greater peak gluteus medius forces. Running with more compliant RSPs may be beneficial for long-term joint health by reducing peak and impulsive hip loading compared to DUPs.


Assuntos
Amputação Cirúrgica
2.
J Electromyogr Kinesiol ; 55: 102462, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091790

RESUMO

People with unilateral transtibial amputation (TTA) have biomechanical differences between the amputated and intact legs and compared to people without TTA during running. Additional biomechanical differences emerge between running with running-specific (RSPs) and daily-use prostheses (DUPs), but the associated underlying muscle activity is unclear. We collected surface electromyography from the biceps femoris long head, rectus femoris, vastus lateralis, and gastrocnemius as well as body kinematics and ground reaction forces in six people with and six people without TTA. We compared stance phase muscle activity and peak activation timing in people with and without TTA and between people using RSPs compared to DUPs during running at 3.5 m/s. Peak amputated leg hamstring activity occurred 34% (RSP) and 31% (DUP) earlier in stance phase compared to the intact leg. Peak amputated leg rectus femoris activity of people wearing DUPs occurred 8% and 9% later in stance phase than the intact leg of people wearing DUPs and amputated leg of people wearing RSPs, respectively. People with TTA had 45% (DUP) and 61% (RSP) smaller peak amputated leg knee extension moments compared to people without TTA, consistent with observations of quadriceps muscle activity. Using RSPs decreased overall muscle activity compared to DUPs.


Assuntos
Amputação Cirúrgica/reabilitação , Membros Artificiais/normas , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Adulto , Amputados/reabilitação , Fenômenos Biomecânicos/fisiologia , Eletromiografia/métodos , Feminino , Humanos , Masculino
3.
J Biomech ; 101: 109629, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32008807

RESUMO

Some individuals with a transtibial amputation (TTA) may not have access to running-specific prostheses and therefore choose to run using their daily-use prosthesis. Unlike running-specific prostheses, daily-use prostheses are not designed for running and may result in biomechanical differences that influence injury risk. To investigate these potential differences, we assessed the effect of amputation, prosthesis type, and running speed on joint work and ground reaction forces. 13 people with and without a unilateral TTA ran at speeds ranging from 2.5 m/s to 5.0 m/s. People with TTA ran using their own daily-use and running-specific prostheses. Body kinematics and ground reaction forces were collected and used to compute joint work. People with TTA had smaller peak braking, propulsive and medial/lateral ground reaction forces from the amputated leg compared to people without TTA. People wearing running-specific prostheses had smaller peak amputated leg vertical ground reaction forces compared to daily-use prostheses at speeds above 3.5 m/s. Medial/lateral forces were also smaller in running-specific prostheses, which may present balance challenges when running on varied terrain. Running-specific prostheses stored and returned more energy and provided greater propulsion, resulting in more similar positive hip work between legs compared to daily-use prostheses. Increases in positive hip work, but not device work, highlight the importance of the hip in increasing running speed. Running-specific devices may be beneficial for joint health at running-speeds above 3.5 m/s and provide advantages in propulsion and energy return at all speeds compared to daily-use prostheses, helping people with TTA achieve faster running speeds.


Assuntos
Membros Artificiais , Fenômenos Mecânicos , Corrida/fisiologia , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Feminino , Humanos , Perna (Membro)/fisiologia , Perna (Membro)/cirurgia , Masculino
4.
J Biomech ; 84: 36-45, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30638718

RESUMO

Running is beneficial for physical, social, and emotional health, and participating in physical activity, including running, is becoming more popular for people with an amputation. However, this population has a greater risk of falling relative to people without an amputation, which may be a barrier to running. Understanding how dynamic balance is maintained during running is important for removing this barrier. To investigate dynamic balance, we quantified whole-body angular momentum in eight people with a unilateral transtibial amputation (TTA) using running-specific prostheses (RSPs) compared to eight people without TTA during running at 2.5, 3.0, and 3.5 m/s. People with TTA had greater ranges of whole-body angular momentum compared to people without TTA in the frontal and sagittal planes (p < 0.01). These greater ranges resulted from smaller peak medial, lateral, and braking ground reaction forces from the amputated leg compared to the intact leg and people without TTA. Reduced RSP mass relative to the biological leg also influenced whole-body angular momentum as evidenced by smaller ranges of amputated leg angular momentum compared to the intact leg in the frontal and sagittal planes. Smaller amputated leg angular momentum corresponded with smaller contralateral arm angular momentum in the sagittal plane (p < 0.01). People with TTA maintain balance during running with altered muscle coordination and prosthesis characteristics. Restoring mediolateral force generation through prosthetic design advances may help in regulating the frontal plane component of whole-body angular momentum for people with TTA, with potential to improve their ability to maintain balance during running.


Assuntos
Membros Artificiais , Fenômenos Mecânicos , Corrida/fisiologia , Acidentes por Quedas , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Marcha , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...